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Numerical simulations of two-dimensional microemulsion growth kinetics were performed on a mas-
sively parallel computer. The modeling is based on a time-dependent Ginzburg-Landau formulation.
We use two fields to describe the ternary mixture: one order parameter field that describes the concentra-
tion difference between the fluid’s main constituents, and an additional scalar field corresponding to the
local surfactant density. We treat the case where both fields are conserved. To account for full hydro-
dynamics, we include Navier-Stokes-type evolution equations for the conserved currents. The coupling
follows the model H in the terminology of Halperin and Hohenberg [Rev. Mod. Phys. 49, 435 (1977)].
The simulation results indicate that a universal scaling function relates quasistatic structure factors for
different time stages as well as for varying mean surfactant concentrations to each other. In simulations
without noise an early freezing of the domain structure was observed. This is no longer true if noise is
added. We believe that model H, with an appropriate Hamiltonian, should best describe many aspects of

self-assembly dynamics and kinetics.

PACS number(s): 82.70.Kj, 82.20.Wt, 68.10.Jy, 64.75.+g

INTRODUCTION

Complex fluids such as ternary mixtures containing oil,
water, and surfactants give rise to interesting microstruc-
tures such as microemulsions and lamellar phases. These
phases develop because the surfactant stabilizes the sys-
tem in morphologies that the binary mixture of the two
otherwise immiscible components would never show.
The equilibrium properties of these systems have been ex-
tensively studied in the recent past [1], but the kinetics of
microphase separation and the equilibrium dynamics re-
quire further investigation. Only the most basic studies
have so far been reported [2]. Growth kinetics in binary
fluids has received much attention, and a comparatively
consistent picture is within reach. However, when sur-
factants are added to a binary mixture, the kinetic
behavior can significantly change. Surfactant films screen
the repulsive forces between oil and water domains,
which results in a decrease of the driving force of the
domain growth process.

A central quantity in the study of growth kinetics is
the time-dependent average domain size R (#). For
binary systems in the regime of sharp domain walls, it
follows algebraic growth laws of the form R (¢)~t". For
systems without hydrodynamic interactions (binary al-
loys), the growth exponent has been found to be » =1, in-
dependent of the space dimension. If flow effects are
relevant (binary fluids), one obtains n =2 in two space di-
mensions and n =1 in three space dimensions.

Up to now, binary phase separation has been simulated
by using spin-exchange kinetic Ising models [3], cell
dynamical systems without hydrodynamics [4] and with
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Oseen tensor hydrodynamics [5], time-dependent
Ginzburg-Landau models either without hydrodynamics
[6] or with various couplings to hydrodynamic modes [7],
and lattice Boltzmann techniques [8]. The predominant
part of the simulations confirmed previous theoretical ex-
pectations [9]. For ternary systems, growth kinetics has
been studied by the numerical integration of time-
dependent Ginzburg-Landau models as well [10]. The
effects of hydrodynamic interactions were investigated in
molecular-dynamics simulations [11].

We have studied the kinetics of phase separation in a
time-dependent Ginzburg-Landau model for microemul-
sion by means of large-scale numerical simulation on a
massively parallel computer. Our formulation contains a
separate evolution equation for the surfactant density and
Navier-Stokes—type equations to capture hydrodynamic
effects. Under the assumption that the fluid velocity is
slow and slaved to the phase-separation dynamics, hydro-
dynamics could also be implemented by using the Oseen
tensor approach. However, later on we wish to use this
model to study regimes where hydrodynamics is not
necessarily subordinated to the phase-separation process,
so we used Galilean-invariant, nonlinear evolution equa-
tions for the conserved currents. Flow effects are thus
treated on the same footing as the decomposition process.
Finite difference discretization techniques were then used
to obtain an efficient simulation code that takes advan-
tage of the special architecture of the massively parallel
computer at our disposal. Simulations were carried out
for critical quenches in systems with varying mean sur-
factant concentration. For each concentration, results
were averaged over typically 20 to 30 sample runs. Fur-
thermore, the effect of noise on the simulation results was
investigated. We have identified the characteristic
domain size from the first zero crossing of the coordinate
space correlation function.
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TERNARY FLUID MODEL AND IMPLEMENTATION

We have adopted the energy functional of Laradji
et al. [10], which serves to model the decomposition pro-
cess in the presence of surfactants,

F= [ dx[c(Vp?—ry?+uyt+gpy?+ap*—sp(V)?] .
)

The order parameter 3 is proportional to the concentra-
tion difference between oil and water, and the field p cor-
responds to the local surfactant density. In particular,
the gp®y? term favors configurations in which the local
surfactant density remains small in the bulk phases,
whereas the —sp(V)? term models the decrease of sur-
face tension at the phase boundaries due to the
surfactant’s screening properties. Our choice of
coefficients in the energy, r =1, u =14, c=1,g=3,a=1,
and s =7, was influenced by the desire to obtain sharp
domain walls. It has been argued by Gompper and
Schick [12] that this energy functional is not bounded
from below for positive values of s. However, in practice,
we monitored the maximum and minimum values of sur-
factant and order-parameter fields and have not found a
numerical instability. We treat the case of conserved
fields, and thus the values that p can assume are physical-
ly bounded. The maximum of the order-parameter gra-
dient is limited by the order-parameter value in the bulk
phase solution and the lattice spacing.

The implementation of full nonlinear hydrodynamics
follows the principles outlined by Valls and Farrell [7]
that stem from the Hohenberg and Halperin model H
[13]. We finally arrive at a system of generalized convec-
tion diffusion equations,
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The bare shear and bulk viscosities have been chosen to
be =1 and o0 =2. To obtain equations of motion that
are invariant under Galilean transformations, we must
use go=1 for the coupling constant. The fluctuation-
dissipation theorem demands the following correlation
functions for the Gaussian noise terms:

(y(X,tmy(X',2")) =—2TM ,V?8(X —%")8(¢t —1') ,
(np(ic’,t ), (X751") )= —2TM,,V25(56’—5c")6(t —=t'), )
(n, . (%,t )nv,j('i”,t’))= —2TL;8(x —Xx")8(t —t') ,

The time-dependent Ginzburg-Landau equations (2)
were discretized in space by standard finite-difference ap-

proximations. For time integration we have used the
common stochastic variant of the first-order time-explicit

6909

Euler scheme. Simulations have been performed in two
space dimensions with a time step of At=0.1 and a lat-
tice spacing of Ax=1.7. The mobilities were
M,=M P=%. All results corresponding to a specific pa-
rameter configuration were obtained by averaging over a
number of independent sample runs. At the beginning of
each simulation, all fields were initialized with Gaussian
random numbers of some small variance.

The MasPar computer we use possesses a 128X 128
processor array for parallel computations. Each proces-
sor has access to 64 kbytes of local memory to store data.
A fast communication network between adjacent proces-
sors allows the rapid exchange of information. Finite-
difference schemes or grid based computations in general
can be mapped quite effectively to the processor matrix
when each grid node is associated with one processor.
On a machine like the MasPar explicit time integration
schemes are quite competitive. The size of our simula-
tion grid fits the computer’s processor matrix, and we
gain results from hardware periodic boundary conditions.
The computer code has an overall performance of 50 grid
updates per second, and a typical run consists of 5000 to
10 000 updates.

RESULTS

We first performed a number of long time runs, both
with and without noise, to get an overview of the phase-
separation process. In both cases, systems containing no
surfactant show n =2 power-law growth. Without noise
one finds that, for intermediate surfactant concentration,
the growth is slower than logarithmic, whereas for high
surfactant concentration the growth process stops very
early even if hydrodynamic modes are present. With re-
gard to simulations of binary spinodal decomposition [6]
and also of ternary mixtures [10], it has been stated by
some authors that noise seems to play no essential role.
We found this as far as the scaling properties are con-
cerned. However, under the influence of noise the
domain growth is generally faster [7], and we found strik-
ing differences looking at the domain structure at late
times. Systems with surfactant concentrations for which
the domain structure had been frozen in deterministic
simulations exhibit further domain growth if the noise is
acting.

Figure 1 summarizes the growth behavior during the
scaling regime for runs with noise, i.e., 7 =0.05 in Egs.
(3), and full hydrodynamics. Under the influence of ran-
dom forcing and for small to intermediate surfactant con-
centrations, we find algebraic growth. This clearly ap-
plies to curves with p,=0.02 up to p,=0.10. If the mean
surfactant density is further increased, we believe that
there is slower growth. Thus, we approximated the
curves in Fig. 1 in the scaling regime between ¢t =25 and
250 by power law fits of the form R (¢)~t". The effective
exponents that have been obtained by using the least-
squares method are shown in Fig. 2. The data suggest
that a change in growth behavior might occur for sys-
tems with mean surfactant densities between 0.06 and
0.08.

The circularly averaged structure factors we have ob-
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FIG. 1. Growth of the characteristic domain size under the
influence of hydrodynamics and random forcing. The curves
from bottom to top correspond to increasing mean surfactant
densities between 0.0 and 0.2 in increments of 0.02. The dashed
line represents a function of the form f(¢t)= A + Bt*/>.

tained display a similarity that extends over systems with
the same surfactant concentration but at different time
stages, as well as over mixtures containing different
amounts of surfactant. This suggests that a universal
scaling function F(x) describes two-dimensional binary
and ternary mixtures during the domain formation pro-
cess through the relation S (k,z)=[R (¢)]>)F(kR (t)). Fig-
ure 3 shows the data collapse for the rescaled circularly
averaged structure factors from runs with noise. We be-
lieve that deviations from the master curve are due to
finite-size effects. The time interval where asymptotic
scaling has been established but before finite-size effects
take over is not long enough. A closer look at the figure
reveals that curves corresponding to prior time stages
tend to show a shoulder. However, we find a well
developed Porod tail, especially for older systems. If no
noise is acting, the scaling function shows a Porod shoul-
der; but the decay at very high wave numbers is steeper
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FIG. 2. Effective exponents of the domain growth for sys-
tems with increasing mean surfactant density. The line connect-
ing the data values only serves to guide the eye.

Scaled Wave Number

FIG. 3. Porod plot of rescaled structure factors from simula-
tions with noise and hydrodynamics at different time stages and
for varying mean surfactant concentrations. The straight lines
have a slope of —3.

than Porod’s law predicts.
The crossover scaling reported by Laradji et al. [10,11]
was observed in our simulations only in the absence of

noise where the domain growth terminates. It is de-
scribed by the relation
R ()t "=f(tplln), 4)

where f () is the crossover scaling function and 7=1p}/%

is the scaling variable. For small 7, the scaling function
should approach a constant, whereas for large 7 it should
decay as 7~ ". Data from simulations without hydro-
dynamics [10] gave a crossover exponent of n =1 which
stems from the kinetic growth exponent for binary alloys.
In accordance with the molecular-dynamics simulations
of Laradji et al. [11], that account for hydrodynamic
effects in a natural way, we obtained the best fit for inter-
mediate to high surfactant concentration in Fig. 4 by us-
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FIG. 4. Crossover scaling function from simulations with hy-
drodynamics but no noise. The solid curves correspond to vari-
ous runs with intermediate to high surfactant concentration.
The crossover scaling exponent was chosen to be n=%. The
dashed line has a slope of —n=— %
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ing a crossover exponent of n =1. We believe therefore
that many aspects of the dynamics and nonequilibrium
behavior of self-assembled phases can be described by Eq.
(2).

To summarize, the separation process is faster if hy-
drodynamic modes are present. An upper limit for the
growth rate is the n =2 power law of two-dimensional
binary fluids. Only in simulations without noise could we
confirm certain results regarding final domain sizes re-
ported previously by Laradji et al. in the absence of hy-
drodynamics [10] or in molecular-dynamics simulations
[11]. Random forcing prevents domains from freezing.
In the scaling regime, power-law fits were successful even
in the case of high surfactant density. After the nu-
cleation process, growth is strongly related to interface
dynamics. Noise forcing leads to interface perturbations,
which facilitate the reorganization of the domain struc-
ture. That noise perturbations can accelerate or even ac-
tivate evolution processes in dynamical systems of the
kind we have studied here numerically also fits into the
mathematical theory developed for these systems [14].

Looking at the quasistatic structure factors in more de-
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tail, we found that they obviously display similarity for
different time stages as well as for different values of the
mean surfactant density. Scaling observed in binary sys-
tems extends to the growth behavior of ternary mixtures
as long as the latter show a domain coarsening regime.
The Porod plot of the scaling function corresponding to
simulations without noise shows a Porod shoulder but a
steeper decay for larger wave numbers. If noise is
present, a prominent Porod tail develops. Among more
general considerations it is this feature that makes us
confident in the stochastic simulations.

Our formulation allows the simulation of regimes
where the velocity field is not slaved to the phase-
separation process. It can be used, e.g., to study the
response of the ternary fluid to shear. This leads to the
investigation of rheological properties for complex fluids.
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